Технологии искусственного интеллекта и IoT тесно связаны и дополняют друг друга. Сама топология IoT-решений предусматривает аналитическую обработку информации на стороне Cloud. Именно из-за анализа данных, полученных из многих источников информации, мы имеем синергетический эффект всего приложения. Однако большинство сегодняшних IoT-решений применяют анализ данных только на уровне Cloud, собирая огромное количество сырых данных от многих тысяч, а иногда и миллионов периферийных устройств.
В этой статье я постараюсь показать преимущества внедрения искусственного интеллекта на возможно более ранних этапах передачи информации, применяя концепцию перехода от Cloud computing в сторону Fog computing.
Мой опыт разработки — более 30 лет, из них 17 лет — в HighTech-индустрии Израиля. В настоящее время сотрудничаю с компанией GlobalLogic на позиции Senior Solution Architect. Руководитель направления компании в области искусственного интеллекта во встроенных системах.
Когда в середине 90-х годов к нам в компанию «Телрад» пришли представители Java с их первым продуктом Java 1.2, у нас, embedded-программистов, был шок. Мы поняли, что теперь код с сервера может исполняться на любом периферийном устройстве под контролем единого центра и даже независимо от конкретной платформы периферийного устройства. С тех пор прошло много времени до появления по-настоящему связанных через сеть устройств, которые сегодня мы называем IoT.
Еще одно существенное изменение, которое произошло с того времени, это направление потока данных. Если раньше мы старались больше удаленно управлять устройствами, то теперь нам важнее собирать информацию с периферийных устройств, обрабатывать её с помощью программных алгоритмов, принимать решения без вовлечения человека и только потом автоматически управлять устройствами. Фактически, выполнять полный цикл приложения без участия человека.
Сегодня IoT применим в любой области бизнеса. Некоторые из областей я постарался разобрать в моей предыдущей статье.
Еще одним существенным развитием технологии, удачно примененной в IoT, является построение экосистемы решения. Это подразумевает объединение устройств, произведенных различными вендорами и используемыми в едином приложении. Также экосистема объединяет устройства, Cloud и людей с различными функциями. Одной из самых важных категорий решений является предсказание. Этого типа решений вообще не существовало ранее. Предсказание событий чрезвычайно важно, поскольку экономит огромные финансовые ресурсы. Это уменьшает необходимый запас складских активов и экономит выполнение различных процессов. Поэтому обмен данными, как к/из центра, так и между устройствами, это только первое видимое преимущество IoT-систем.
Эта индустрия развивается лавинообразным образом. По прогнозам Business Insider Intelligence, к 2025 году будет более 55 миллиардов IoT-устройств по сравнению с 9 миллиардами в 2017 году.
Какие пути монетизации синергетического эффекта искусственного интеллекта и IoT видимы сегодня:
По данным Forbes, искусственный интеллект обеспечит увеличение прибыли на 38% к 2035 году.
Тенденция IoT с применением AI — это движение от сбора данных к агрегации знаний.
Типичные решения IoT до настоящего времени имели следующую логику. Физические датчики измеряют аналоговую величину, микропроцессор периферийного устройства переводит ее в цифровую форму, преобразует в заданную модель и передает в локальный концентратор. Оттуда данные с нескольких периферийных устройств в пакетном режиме передаются в Cloud, где обрабатываются механизмами анализа больших данных. Принимается решение по управлению, которое передается назад в периферийные устройства для управления исполнительными механизмами, как показано на рисунке. Параллельно, данные в аналитическом виде могут поступать к пользователям.